博客
关于我
Li‘s 影像组学视频学习笔记(15)-ROC曲线及其绘制
阅读量:563 次
发布时间:2019-03-09

本文共 905 字,大约阅读时间需要 3 分钟。

本笔记来源于B站Up主: 有Li 的影像组学系列教学视频

本节(15)主要介绍:

  • ROC 曲线

ROC = receiver operating characteristic curve, 受试者工作特征曲线

横坐标:FPR = false positive rate, 假阳
纵坐标:TPR = true positive rate, 真阳
ROC曲线上的点,表示在不同阈值时对应的FPR和TPR
上面的阈值指预测阳性概率为多大及以上时,判定为阳性
关注四个点来理解ROC曲线:
(0,0) :FPR = 0,TPR = 0, 即全部预测N
(1,1) :FPR = 1,TPR = 1,即全部预测P
(1,0) :FPR = 1,TPR = 0,即全部预测错了
(1,1) :FPR =1,TPR = 1, 即全部预测对了

  • AUC = area under curve

代码(基于之前的数据结果):

from sklearn.metrics import roc_curve, roc_auc_scorey_probs = model_svm.predict_proba(X)#print(y_probs)#print(y_probs[:,1])fpr,tpr,thresholds = roc_curve(y,y_probs[:,1],pos_label = 1)plt.plot(fpr,tpr,marker = 'o')plt.xlabel('fpr')plt.ylabel('tpr')plt.show()auc_score = roc_auc_score(y,model_svm.predict(X))print(auc_score)
#select the best thresholdJ = tpr - fpridx = argmax(J)best_threshold = thresholds[idx]

作者:北欧森林

链接:https://www.jianshu.com/p/496bb5f371d3
来源:简书,已获授权转载

RadiomicsWorld.com “影像组学世界”论坛:

你可能感兴趣的文章
mysql视图
查看>>
MySQL视图
查看>>
MySQL视图
查看>>
Mysql视图、变量、存储过程、函数
查看>>
Mysql视图、触发器、事务、储存过程、函数
查看>>
MySQL视图与索引详解
查看>>
mysql视图建立MERGE算法和TEMPTABLE算法的区别(效率与表锁定问题)
查看>>
mysql视图,索引和存储过程
查看>>
mysql解压没有data_Windows 64 位 mysql 5.7以上版本包解压中没有data目录和my-default.ini及服务无法启动的快速解决办法(问题小结)...
查看>>
Mysql解压版安装
查看>>
mysql触发器
查看>>
Mysql设置字符编码及varchar宽度问题
查看>>
mysql设置数据允许远程连接
查看>>
MySQL设置白名单限制
查看>>
MySQL设置远程连接
查看>>
mysql设计数据库和表的规范
查看>>
MySQL该如何将月增上亿条数据的单表处理方案优雅落地?
查看>>
MySQL详解:索引的介绍和原理分析
查看>>
MYSQL语句。
查看>>
MySQL调优是程序员拿高薪的必备技能?
查看>>